44,352 research outputs found

    Simulating Organogenesis in COMSOL: Tissue Mechanics

    Full text link
    During growth, tissue expands and deforms. Given its elastic properties, stresses emerge in an expanding and deforming tissue. Cell rearrangements can dissipate these stresses and numerous experiments confirm the viscoelastic properties of tissues [1]-[4]. On long time scales, as characteristic for many developmental processes, tissue is therefore typically represented as a liquid, viscous material and is then described by the Stokes equation [5]-[7]. On short time scales, however, tissues have mainly elastic properties. In discrete cell-based tissue models, the elastic tissue properties are realized by springs between cell vertices [8], [9]. In this article, we adopt a macroscale perspective of tissue and consider it as homogeneous material. Therefore, we may use the "Structural Mechanics" module in COMSOL Multiphysics in order to model the viscoelastic behavior of tissue. Concretely, we consider two examples: first, we aim at numerically reproducing published [10] analytical results for the sea urchin blastula. Afterwards, we numerically solve a continuum mechanics model for the compression and relaxation experiments presented in [4]

    Using stock returns to identify government spending shocks

    Get PDF
    This paper explores a new approach to identifying government spending shocks which avoids many of the shortcomings of existing approaches. The new approach is to identify government spending shocks with statistical innovations to the accumulated excess returns of large US military contractors. This strategy is used to estimate the dynamic responses of output, hours, consumption and real wages to a government spending shock. We find that positive government spending shocks are associated with increases in output, hours, and consumption. Real wages initially decline after a government spending shock and then rise after a year. We estimate the government spending multiplier associated with increases in military spending to be about 0.6 over a horizon of 5 years.Fiscal policy ; Government spending policy ; Stocks

    Searching for Globally Optimal Functional Forms for Inter-Atomic Potentials Using Parallel Tempering and Genetic Programming

    Full text link
    We develop a Genetic Programming-based methodology that enables discovery of novel functional forms for classical inter-atomic force-fields, used in molecular dynamics simulations. Unlike previous efforts in the field, that fit only the parameters to the fixed functional forms, we instead use a novel algorithm to search the space of many possible functional forms. While a follow-on practical procedure will use experimental and {\it ab inito} data to find an optimal functional form for a forcefield, we first validate the approach using a manufactured solution. This validation has the advantage of a well-defined metric of success. We manufactured a training set of atomic coordinate data with an associated set of global energies using the well-known Lennard-Jones inter-atomic potential. We performed an automatic functional form fitting procedure starting with a population of random functions, using a genetic programming functional formulation, and a parallel tempering Metropolis-based optimization algorithm. Our massively-parallel method independently discovered the Lennard-Jones function after searching for several hours on 100 processors and covering a miniscule portion of the configuration space. We find that the method is suitable for unsupervised discovery of functional forms for inter-atomic potentials/force-fields. We also find that our parallel tempering Metropolis-based approach significantly improves the optimization convergence time, and takes good advantage of the parallel cluster architecture

    Electroproduction of Soft Pions at Large Momentum Transfers

    Get PDF
    We consider pion electroproduction on a proton target close to threshold for Q^2 in the region 1-10 GeV^2. The momentum transfer dependence of the S-wave multipoles at threshold, E_{0+} and L_{0+}, is calculated using light-cone sum rules.Comment: 8 pages, 3 figures; Invited talk at the workshop on Exclusive Reactions at High Momentum Transfer, 21-24 May 2007, Newport News, Virginia, U.S.A. and International Conference on hadron Physics TROIA'07, 30 Aug. - 3 Sept. 2007, Canakkale, Turke

    Local‐Regional Similarity in Drylands Increases During Multiyear Wet and Dry Periods and in Response to Extreme Events

    Get PDF
    Climate change is predicted to impact ecosystems through altered precipitation (PPT) regimes. In the Chihuahuan Desert, multiyear wet and dry periods and extreme PPT pulses are the most influential climatic events for vegetation. Vegetation responses are most frequently studied locally, and regional responses are often unclear. We present an approach to quantify correlation of PPT and vegetation responses (as Normalized Difference Vegetation Index [NDVI]) at the Jornada ARS‐LTER site (JRN; 550 km2 area) and the surrounding dryland region (from 0 to 500 km distance; 400,000 km2 study area) as a way to understand regional similarity to locally observed patterns. We focused on fluctuating wet and dry years, multiyear wet or dry periods of 3–4 yr, and multiyear wet periods that contained one or more extreme high PPT pulses or extreme low rainfall. In all but extreme high PPT years, JRN PPT was highly correlated... (See article for full abstract)

    Low and high intensity velocity selective coherent population trapping in a two-level system

    Get PDF
    An experimental investigation is made of sub-recoil cooling by velocity selective coherent population trapping in a two-level system in Sr. The experiment is carried out using the narrow linewidth intercombination line at 689 nm. Here, the ratio between the recoil shift and the linewidth is as high as 0.64. We show that, on top of a broader momentum profile, subrecoil features develop, whose amplitude is strongly dependent on the detuning from resonance. We attribute this structure to a velocity selective coherent population trapping mechanism. We also show that the population trapping phenomenon leads to complex momentum profiles in the case of highly saturated transitions, displaying a multitude of subrecoil features at integer multiples of the recoil momentum.Comment: 6 pages and 7 figure

    Design of helicopter rotor blades for optimum dynamic characteristics

    Get PDF
    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering

    Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    Get PDF
    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions

    Network ST radar and related measurements at Pennsylvania State University

    Get PDF
    Mesoscale meteorological measurements, analysis and prediction are some of the principal areas of research in the Department of Meteorology at Penn State. In anticipation of a staged turn-on of the three systems during the Summer and Fall of 1984, the nonconstruction-related efforts have focused on the software development necessary to allow essentially immediate use of network data. A 16-bit microcomputer has been programmed to serve as the network controller, communications interface and, at least for real-time purposes, the operational display system. Insofar as possible we have in this task built upon our substantial accumulated experience in working with the processing and display of Doppler sodar system signals. Once the radar-derived wind and turbulence profiles are communicated to the various interconnected Departmental computers they become just one component of a comprehensive data base which can be applied to a diverse set of ongoing basic and operational research programs
    corecore